Dieta y suplementos,fisicoculturismo -> Nutricion y sobreentrenamiento en culturismo

Posibles Vínculos entre la Nutrición y el Sobreentrenamiento

Asker Jeukendrup

Human Performance Laboratory, Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, Reino Unido.

ejercicio de corta duración, estado nutricional, dieta, infección, trauma). Adicionalmente, no ha sido aún demostrado un vínculo directo entre glutamina e infecciones, y no esta claro si la suplementacion con glutamina puede mejorar la función inmune y reducir las infecciones.

AMINOACIDOS DE CADENA RAMIFICADA (BCAA; AACR)

En 1987, fue lanzada otra hipótesis por el Prof. Eric Newsholme en la cual el aminoácido triptofano fue asociado a la fatiga central (Newshome y cols, 1991). El triptofano es el precursor de las 5-hidroxitriptamina (5-HT o serotonina) en el cerebro. Solo aproximadamente el 10% del triptofano en plasma esta en forma libre (no ligado a las proteínas), y existe evidencia para sugerir que solo esta fracción esta disponible para consumo del cerebro; el remanente se liga a la albúmina en plasma, pero comparte un grado de ligazón con los ácidos grasos. Durante el ejercicio los ácidos grasos son movilizados desde el tejido adiposo y por la vía del plasma, son transportados al músculo para servir como combustible. Con el ejercicio prolongado la concentración de ácidos grasos en sangre se incrementara gradualmente. Tanto los ácidos grasos como el aminoácido triptofano se ligan a la albúmina y compiten por los mismos sitios de ligazón. El triptofano se desprenderá de su ligazón con la albúmina por el incremento de la concentración de AGL y, por lo tanto, la concentración de triptofano libre en la sangre se elevara. Simultáneamente, la oxidación de los aminoácidos de cadena ramificada (BCAA), leucina, isoleucina y valina en el músculo se incrementa en el ejercicio prolongado (Wagenmakersy cols., 1991; Wagenmakers y cols, 1989). Esto conducirá a un detrimento de la concentración de BCAA en sangre, y de manera más importante, el cociente triptofano libre/BCAA se incrementara sustancialmente. Dado que los BCAA y el triptofano compiten por el acceso mediado por un transportador (o “carrier”) al sistema nervioso central por medio del gran transportador neutral de aminoácidos (AANG), el incremento en este cociente podría conducir a un incremento del transporte de triptofano a través de la barrera emato-encefálica, (Chauloff y cols., 1986, Hargreaves y Padrige, 1988). Una vez captado, se podría producir la conversión de triptofano a 5-HT y conducir a un incremento local de este neurotransmisor. Por cierto este incremento fue hallado en ciertas áreas del cerebro en ratas, pero no se a establecido si esto también puede ocurrir en seres humanos.

De acuerdo con la hipótesis de la fatiga central, el incremento de la actividad serotoninérgica podría subsiguientemente conducir a fatiga central, forzando a los atletas a detener el ejercicio o de reducir la velocidad de carrera o de pedaleo. Diversos estudios demostraron que la serotonina desempeña un rol en el comienzo del sueño, y que es un factor determinante en el estado de animo y agresión. Por eso, es incierto que esta también desempeñe un rol en la percepción de la fatiga durante el ejercicio prolongado. Newsholme y cols. (1991) también sugirieron que el sobreentrenamiento puede conducir a niveles de ácidos grasos y cociente triptofano libre/BCAA crónicamente elevados. De acuerdo a esta hipótesis, esto podría conducir a un incremento de las concentraciones de 5-HT en el cerebro, y este fenómeno fue utilizado para explicar algunos de los síntomas de fatiga (central) del sobreentrenamiento.

Una de las implicancias de la hipótesis de fatiga central es que la ingesta de BCAA, que compiten con el triptofano por el transporte dentro del cerebro, podría reducir el incremento inducido por el ejercicio de triptofano consumido por el cerebro, y por lo tanto demorar la fatiga. Otra implicancia es que la ingesta de triptofano antes del ejercicio, podría reducir el tiempo hasta el agotamiento. Durante los últimos 5 años muchos estudios intentaron evaluar esta hipótesis.

El efecto de la ingestión de BCAA sobre el rendimiento físico fue investigado por primera vez en un test de campo por Bloomstrand y cols. (1991). Ciento noventaitres sujetos de sexo masculino fueron estudiados durante una maratón en Estocolmo. Los sujetos fuero divididos en un grupo experimental que recibía 16 g de BCAA en agua durante la carrera, y el grupo placebo que recibía agua saborizada. Los sujetos tuvieron adicionalmente acceso “ad libitum” a bebidas que contenían carbohidratos (CHO). No fueron observadas diferencias en el tiempo de maratón en los dos grupos. Sin embargo cuando el grupo original de sujetos fue dividido en grupos corredores lentos y rápidos, allí se observo una pequeña reducción significativa en el tiempo de carrera durante la segunda mitad de la maratón solo en los corredores más lentos. Este estudio tubo diversas fallas experimentales y retrospectivamente este primer estudio fue el único que manifestaba un efecto positivo de la ingestión de BCAA durante el ejercicio. Vanier y cols. (1994) investigaron a 6 sujetos moderadamente entrenados luego del ejercicio que generó una depleción de glucógeno seguido de un ayuno nocturno. Los sujetos fueron investigados a la mañana siguiente durante ejercicio incremental hasta el agotamiento, y recibieron una infusión intravenosa de BCAA (260 mg/kg/hora, por 70 min), o solo solución salina. No se observaron diferencias significativas entre los tests en el trabajo total realizado. Bloomstrand y cols (1995) también investigaron el rendimiento en laboratorio en cinco sujetos de sexo masculino entrenados en resistencia durante el ejercicio extenuante sobre una bicicleta ergométrica a una tasa de trabajo correspondiente al 75% VO2 máx. luego de la reducción de sus depósitos de glucógeno muscular. Durante el ejercicio se les proporcionó a los sujetos, al azar, una solución del 6% de carbohidratos que contenía 7 g/dl de BCAA, o una solución de 6% de carbohidratos y agua saborizada. El posible efecto del test de campo no fue confirmado en este estudio controlado de laboratorio, tanto como no se vieron diferencias en el rendimiento cuando se les dio a los sujetos carbohidratos más BCAA o solo carbohidratos. Broomstrand y cols (1997) compararon agua saborizada con una solución de BCAA en siete ciclistas de resistencia entrenados, y no encontraron efecto alguno sobre el trabajo total realizado durante una prueba de tiempo de 20 min, pedaleado luego de 1 hora de ejercicio al 70% VO2 máx. Madsen y colegas (1996) investigaron el rendimiento en 9 ciclistas entrenados en una prueba de tiempo de 100 km en el laboratorio. Los sujetos ingirieron agua saborizada (placebo) o una solución de 5% de carbohidratos (66 g por hora), o carbohidratos (66 g por hora) más BCAA (6,8 g por hora). No hubo diferencias entre los tratamientos en el tiempo requerido para finalizar los 100 km. En un estudio bien controlado Van Hall y colegas (1995) estudiaron el efecto de la suplementacion con BCAA sobre el rendimiento de la resistencia al 70-75 % VO2 máx. Los sujetos (ciclistas y triatletas bien entrenados) se reportaron 4 veces al laboratorio, y recibieron una solución del 6% de sucrosa, o una solución de 6% de sucrosa en combinación con 6 g/l o 18 g/l de BCAA. Adicionalmente durante una prueba recibieron una sola solución de 6% de sucrosa con 3 g/l de triptofano. Si bien la ingestión de BCAA como la de triptofano tuvieron efectos profundos sobre las concentraciones de aminoácidos en plasma, no se observó efecto alguno sobre el tiempo hasta el agotamiento. Por lo tanto, estos investigadores concluyeron que la suplementacion con BCAA no afecto el rendimiento.

Van Hall y colegas (1995) calcularon que la suplementacion con BCAA, podría reducir el transporte de triptofano en un 8-12%, en tanto la ingesta de triptofano podría incrementar el transporte en 600-1900%. A pesar de estas grandes diferencias calculadas en transporte de triptofano a través de la barrera hemato-ensefálica, no se encontraron diferencias en el rendimiento en el ejercicio. Una explicación posible es que la concentración de serotonina no estuvo muy influenciada en el área relevante del cerebro, o una segunda explicación posible es que la serotonina no desempeña un rol importante en el desarrollo de fatiga durante el ejercicio.

CONCLUSION

Las estrategias nutricionales adecuadas para prevenir la depleción de carbohidratos y la deshidratación reducirán el riesgo de sobreentrenamiento. Todas las medidas tomadas para reducir perturbaciones en el medio neuroendocrino ayudaran a prevenir el comienzo de sobreentrenamiento. El tiempo de dosificación y la cantidad de bebidas carbohidratos-electrolíticas, durante y luego del ejercicio, se pueden tornar aspectos críticos durante períodos de entrenamiento intensificado. Si bien se sugirió que la glutamina puede ser un indicador de sobreentrenamiento y que la suplementacion con la glutamina puede reducir la inmunosuprecion, existe poca evidencia para sostener estas afirmaciones. De manera similar, si bien se afirmó que la suplementación con BCAA reduce la fatiga y previene el sobreentrenamiento, no existe evidencia científica para sostener estas afirmaciones. Por lo tanto, actualmente no hay razón para recomendar suplementacion con glutamina o BCAA a los atletas.

REFERENCIAS

1. 6. CHAOULOFF, F., G.A. KENNETT, B. SERRURRIER, D. MERINO, AND G. CURZON. An-fino acid analysis demonstrates that icreased plasma free tryotophan causes the increase of brain . J. Neurochem; 46: 1646-1650. 1986.

2. BARRO, J.L., T.D., NOAKES, W. LEVY, C. SMITH, AND R.P., MILLAR. Hipotalamic dysfunction in overtrained athletes. J Clin Endocrinol Metad 60:803-806. 1985.

3. BLOMSTRAND, E., P. HASSMEN, B. EKBLOM, AND, E.A., NEWSHOLME. Administration of branched-chain amino acids during sustained exercise-effects on performance an o plasma consentration of some amono acids. Eur. J. Appl. Physiol.; 63: 83-88. 1991.

4. BLOSTRND, E., S. ANDERSSON, P. HASSMDN, B. EKBLOM, AND E.A., NEWSHOLME. Effect of branched-chain amino acid and carbohydrate supplementation on the exercise induced change I plasma and muscle concentration of animo acids in human sujets. Acta Physiol Scand; 153: 87-96. 1995.

5. BRENNER, I.K.M., P.N. SHEK, AND R.J. SHEPHARD. Infection in athletes. Sports Med, 17: 86-107. 1994.

6. CASTELL, L.M. AND E. A., NEWSHOLME. Does glutamine have a role in reducing infection in athletes?. Eur. J. Appl. Physiol.; 73: 488-490. 1996.

7. COSTILL, D., L. BOWERS, G. BRANAMM, AND, K. SPARKS. Muscle glycogen utilization during prolonged exercise on successive days . J. Appl. Physiol.; 31: 834-838, 1971. 1940.

8. COSTILL, D.L., M.G. PARK, J. P., KIRWAN, J.A., HOUMARD, J. R., MITCHEL, R. THOMAS, AND, S.H. PARK. Efects of repeated days of intencified training on muscle glycogen and performance . Med. Sci. Sport Exerc.; 20: 249-254. 1988.

9. HARGREAVES, K.M. AND, W.M. PARDRIDGE. Neutral amino acid transport at the human blood-brain barrier. J. Biol. Chem.; 263: 19392-19397. 1988.

10. HULTMAN, E.. Physiological role of muscle glycogen in man, with special reference to exercise . Circ. Res.; 10: 99-114. 1967.

11. IVY, J. . Glycogen resynthesis after exercise: effect of carbohydrate intake. 19:S142-S145. Int. J. Sports. Med.; 19: S142-S145. 1998.

12. IVY, J.L. AND C.H., KUO . Regulation of GLUT4 protein and glycogen synthase during musle glycogen synthesis after exercise. Acta Physiol. Scand.; 162: 295-304. 1998.

13. JEUKENDRUP, A.E. AND, M.K.C., HESSELINK. Overtraining: what do lactate curves tell us?. Br. J. Sports Med.; 28: 239-240. 1994.

14. JEUKENDRUP, A.E.,M.K.C., HESSELINK, A.C. SNYDER, H. KUIPERS, AND, H.A. KEIZER. Physiological changes in male competitive cyclists after two weeks of intensified training. Int. J. Sports Med.; 13; 534-541. 1992.

15. KIGSBURY, K. J., L. KAY, AND, M. HJELM. . Contrasting plasma amino acid patterns in elite athletes: association with fatigue and infection. Br. J. Sports Med.; 32: 25-33. 1998.

16. MACKINNON, L. T. AND, S. HOOPER . Plasma glutamine and upper respiratory tract infection during intensified training. Med. Sci. Sports. Exerc.; 28: 285-290. 1996.

17. MADSEN, K., D.A. MACLEAN, B. KIENS, AND, D. CHRISTENSEN. . Effects of glucose, plus branched-chain amino acids or placebo on bike performance over 100 km. J. Appl. Physiol.; 81: 2644-2650. 1996.

18. NEWSHOLME, E.A., M. PARRY-BILLINGS, N. MCANDREW, AND, R. BUDGET. A biochemical mechanism to explain some mechanisms of overtraining. . In: Advances in Nutrition and Topsport, edited by F. Brouns. Basel: Karger, 79-93. 1991.

19. NIEMAN, D.C., L.M. JOHANSSEN, J.W. LEE, AND, L.J.W. ARABATZIS. Risk of infectious episodes in runners before and after the Los Angeles Marathon. J Sports Med Phys Fitness; 30: 316-328. 1990.

20. PARRY-BILLINGS, M., R. BUDGETT, Y. KOUTEDAKIS, E. BLMSTRAND, S. NEWSHOLME. Plasma amino acid concentrations in the overraining syndrome: possible effects on the inmune system. Med. Sci. Sports Exerc.; 24: 1353-1358. 1992.

21. PARRY-BILLINGS, M.. E. BLOMSTRAND, N. MMCANDREW, AND, E.A., NEWSHOLME. . A communicational link between skeletal muscle, brain, and, cells of the immune sytem. Int. J. Sports Med.; 11: S122-S128. 1990.

22. ROWBOTTOM, D.G., D. KEAST, AND A.R. MORTON. The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med.; 21: 80-97. 1996.

23. SNYDER, A.C., H. KUIPERS, B. CHENG, R. SERVAIS, AND, E. FRANSEN. Overtraining following intensified training with normal muscle glycogen. Med. Sci. Sports Exerc.; 27: 1063-1070. 1995.

24. VAN DER SCHOOR, P, G, VAN, HALL, AND, W, H, M, SARIS. Ingestion of drinks containing protein hydrolysate prevents the post-exercise reduction of plasma glutamine. Int. J. Sports Med., 18: S115. 1997.

25. VAN HALL G., J.S.H. RAAYMAKERS, W. H.M. SARIS, AND A.J.M. WAGENMAKERES. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect perfomance. J. Physiol., 486 (3): 789-794. 1995.

26. VARNIER, M., P. SARTO, D. MARTINES, L. LORA, F. CARMIGNOTO, G.P. LEESE, AND, R. NACCARATO. Effect of infucing branched-chain amino acid during incremental exercise with reduced muscle glycogen content. Eur. J. Appl. Physiol., 69: 26-31. 1994.

27. WAGENMAKERS, A.J.M., E.J. BECKERS, F. BROUNS, H. KUIPERS, P.B. SOETERS, G.J. VAN DER VUSSE AND W.H.M. SARIS. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am. J. Physiol., 260. 1991.

28. WALSH, N.A. BLANNIN, P. ROBSON, AND, M. GLEESON. Glutamine, exercise and inmune function: Links and possible mechanisms. Sports Med.; 26: 177-191. 1998.

29. WINEMAKERS, A.J.M., J.H. BROOKES, J.H. COAKLEY, T. REILLY AND R.H.T. EDWARDS. Exercise-induced activation of brached-chain 2-oxo acid dehydrogenase in human muscle. Eur. J. Appl. Physiol., 59: 159-167. 1989.

30. ZAWADZKI, K.M., B.B. YASPELKIS III, AND, J.L. IVY. Carbohidrate-protein complex increases the rate of muscle glycogen storage after exercise. J. Appl. Physiol., 72: 1854-1859. 1992.

Fuente: sobreentrenamiento.com